

Lecg

Are REC Markets a WRECk Waiting to Happen?

Jürgen Weiss LECG

Boston February 2007

Overview

- What do we want RPS to accomplish?
- How does a "normal" market work?
- The flaws of the current RPS Market Design
- Implications for market power
- Implications for project financing
- **Possible Solutions**
- **Next Steps?**

Why a Renewable Portfolio Standard?

- Belief that (competitive) power markets don't result in "enough" renewable power generation capacity
 - Renewable Power provides positive externalities, i.e. benefits that cannot be captured by holders of property rights
 - Fuel Diversity Benefits
 - Energy Security Benefits
 - Environmental Benefits
 - System Risk Benefits
 - System Infrastructure Benefits
- Idea behind RPS: Provide a revenue stream reflecting those benefits so that the socially desirable amount of renewable capacity gets built
- Idea behind REC markets: Efficient markets result in most efficient renewable power capacity mix (better than some form of direct regulation)
- Result: RPS sets the renewable capacity goal and provides a market rules framework – the markets decide on what gets built.

Min

How does a "normal" market work?

Normal Markets:

- many buyers and sellers
- increasing MC => upward-sloping supply
- decreasing MU => downwardsloping demand
- Equilibrium P*/Q*

MITTAL

How does a REC market "work"?

REC Markets:

- Vertical Demand = RPS Target
- Supply of RECs complex (joint product, MC +/- = 0 up to capacity, then infinite)
- If S>RPS, P=0
- If S<RPS, P=ACP

As designed, REC Markets deviate significantly from the Ideal

- Perfectly inelastic demand
- Very elastic supply up to capacity
 - Most renewable projects have high capital and low operating cost
 - REC production typically a biproduct of electricity generation
 - The MC of RECs will often be close to Zero
- Market prices will tend to be either very low or very high, but rarely in the middle. ("Boom Bust" Cycles)

This can lead to

- Market Power Problems
- Difficulties of financing new Projects

Some very preliminary observations about existing REC Markets

- MA: The market price of RECs is equal to the ACP and has been for a while
- CT: The market price of RECs used to be equal to the ACP until a single large landfill gas facility was qualified under the CT RPS. After that, the market price dropped very substantially and is now below \$10/REC
- Forward market activity in the Northeast is very spotty and not many long-term transactions take place

Inelastic Demand spells market power problems

Cournot Competition Example:

- Demand = $10 (P^{max} = 10 = ACP)$
- 2 suppliers, each with Capacity = 8 and MC=0
- Each firm does max $\pi = p \times q mc \times q = p \times q$
- $p = 10 \text{ if } q_1 + q_2 < 10, 0 \text{ otherwise}$
- symmetric case: $q = q_1 = q_2$
- $q^* = q_1^* = q_2^* = 5, \pi_1 = \pi_2 = 50$
- Big incentive to withhold supply from the market
- Not inefficient given RPS goal, but inefficient for society (we could have generated more renewable power at no extra cost) all surplus goes to producers
- General case (no P^{max}): no matter how many Cournot players, $P = \inf$.
- One possible manifestation: new capacity is NOT BUILT so that REC prices stay high!

Inelastic demand also spells a bad kind of uncertainty

- Renewable projects get financed with a combination of debt and equity
- Typically debt is cheaper than equity
 - less risky to loan money than to invest
 - secured versus unsecured
- Debt also has tax advantages
- WACC is lower, the more leverage
 - WACC = (1 Tax Rate) x Cost of debt x Debt/(Equity+Debt) + Cost of Equity x Equity/(Equity+Debt)
- The lower the WACC, the more projects get developed.
- This is generally true, even thought the PTC currently provides an added incentive for equity financing

morkete w

In "normal" markets, with uncertainty, prices fluctuate around a mean

In REC markets, with uncertainty, prices have a bimodal distribution

Debt Financing harder with bimodal revenue distribution

- A simple way to think about it: Coverage Ratios
 - Level of debt financing depends on the minimum certain revenue stream (in our example = 0)
 - Certain revenues have to be enough to cover interest payments x times.
- Bimodal distribution makes it hard to get any debt financing
- Resulting WACCs for renewable projects high
- Greater difficulty of financing new projects.

Possible Solutions

- Inelastic Demand leads to "bad uncertainty", which in turn leads to thin forward markets.
- Can be overcome by facilitating forward markets or by addressing the inelastic demand problem or both.
- Possible Solutions include:
 - NYSERDA style auction mechanism, which directly creates a long-term market for renewable energy
 - MTC style instruments to reduce the uncertainty of forward REC prices resulting from the current market design
 - NYISO Installed Capacity style demand curve for RECs rather than the fixed percentage target
 - very generous banking (and borrowing) of RECs

Pros and Cons everywhere

Long-term Auctions

- (+) creates the long-term forward market directly and hence almost guarantees development of desired level of new projects
- (-) more stranded costs as a result of long-term contracts?

MTC-style financial risk management tools

- (+) overcome the problems of the current market design
- (-) expensive to finance because of the nature of volatility

REC-demand curve

- (+) the best theoretical solution, would allow forward markets to develop "naturally" in addition to spot markets
- (-) difficult to implement politically and legally; fighting over the shape of the demand curve almost certain

Banking/Borrowing

- (+) increases uncertainty about over-/undersupply of RECs in any period and hence may facilitate forward transacting and prices between the low end and the ACP
- (-) introducing more uncertainty into a market to remedy a problem linked to uncertainty not very elegant

- Boom Bust Cycles are a known problem in many capital intensive industries where investments are "lumpy"
 - Shipbuilding
 - Commercial Real Estate
 - Electricity Markets
- Specifically in Installed Capacity Markets
- Essentially similar solution approaches
 - Long-term Contracts
 - Demand Curve (NYISO, NE-ISO considered)
- NYISO Demand Curve for Installed Capacity
- Approved by FERC in 2006 for PJM Capacity

A Demand Curve for RECs?

- Would specify a target range of Renewable Capacity
- "Alternative Compliance Payments" would decrease as the renewable capacity installed increases, up to a limit
- If the range is chosen reasonably well, should get more price stability

Next Steps to improve RPS

- Eliminate miscellaneous obstacles to the development of a larger regional REC market due to different RPS mechanisms
 - In-state location requirements
 - Delivery Requirements
- Address structural problems
 - Most likely Short Run Solution: Provide Patches to address the underlying structural problems
 - Uniform banking for several periods
 - Provide supplemental hedging tools
 - Longer Term: Address structural problem directly
 - Directly create long-term markets (by having long-term auctions in NYSERDA style) alongside current spot market
 - Consider moving towards demand curve for RECs

Jürgen Weiss LECG jweiss@lecg.com www.lecg.com

Lecg

Boston February 2007